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Abstract-In some hard, viscoelastic polymers crack growth is associated with the formation of a wedge of
crazed material at the tip of the crack, The crazed material is formed from the bulk material by growth of holes
at a given stress which can be likened to a yield stress for metals.

This paper deals with the time'at which a penny-shaped crack surrounded by a wedge shaped ring of crazed
material begins to propagate. The bulk material is considered viscoelastic and the crazed material in the wedge
is modelled by the visco-plasticity model of Crochet. It is found that time-dependent plasticity in the wedge
shortens the time to failure in comparison with time-independent plasticity.

INTRODUCTION

ONE "objection" to the use ofglass-like polymers as structural materials is their apparently
inconsistent behavior with respect to failure. Conditions under which fracture may be
induced can vary widely and, to the casual observer, in an erratic way. Probably the most
disconcerting factor is the ability of polymers to carry loads for some time only, the time
depending on the magnitude of the load.

In order to better understand the load carrying ability of such viscoelastic materials,
it is necessary to study the growth of cracks in these materials. The prime difficulty in
pursuing such studies from the continuum mechanics viewpoint, is the fact that many hard
polymers exhibit not only viscoelastic properties but also rate or time sensitive phenomena
reminiscent of metal yield. Such phenomena may be associated either with microstructural
decomposition of the material or with geometric changes due to necking.

There are repeated examples of crack growth in a variety of hard polymers where
material deformation similar to metal yield at the tip of the crack is contained in a wedgelike
domain. This phenomenon is observed in thin polymer sheets [1] like in metal sheets [2]
or in heavy sections under conditions of plane strain [3,4] and to some extent in Berry's
experiments [5]. For the latter case it has been shown by Kambour [4J that the yielded
material at the tip of the crack is "crazed" and of lower density than the bulk polymer.
The lower density is achieved by void growth which commences, for a given stress or strain
history, at any apparently well defined stress level [3, 6].

The net effect of the crazed material at the tip of the crack-under conditions of plane
strain-is thus to provide a small domain along the crack axis over which the normal
tensile stress remains more or less constant. To the extent that the crazed material also
possesses time-dependent properties, the stress level within this domain varies also with

t This work was supported by the National Aeronautics and Space Administration Research Grant No.
NsG-I72-60 GALCIT 120.
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(1)

time. One objective of this paper is, therefore, to study the effect of the time· dependence
of the crazed material on the time of initial crack propagation.

We distinguish here between initial crack propagation and, what is often referred to
as catastrophic crack growth. A crack may remain dormant for some time [7J before
any crack propagation occurs. Provided the loading is constant or increases. the crack
will then grow, slowly at first [I, 8J, but with monotonically increasing speed until an
apparent crack speed transition occurs to crack velocities on the order of abollt one tenth
of the Rayleigh surface wave speed. This apparent transition may occur very rapidly and
can therefore be mistaken as an instability although the actual instant of instability has
passed much earlier. Work on the velocity transition [8J and this present paper points out
that the initial moment of crack growth, after which instant the crack accelerates mono­
tonically, may occur several orders of magnitudes in time before the rapid crack growth.
In dealing only with the initial transition of a crack from its stationary to its motion stage
we approach the problem of fracture in a very conservative manner in the sense that actual
structure failure might occur very much later than our prediction might lead us to believe.

In this paper we shall consider the growth of a penny-shaped crack in a viscoplastic
material. Although the linear theory of viscoelasticity is well understood, there IS very little
quantitative knowledge regarding non-linear viscoelasticity or viscoplasticity However.
since we are interested primarily in investigating the effect of viscoplasticity rather than
be bound to precise, quantitative predictions, we may be so liberal as to accept the visco­
plasticity model of Crochet [9J which contains most of the qualitative features of what one
would expect of a more complete constitutive formulation. The Crochet model attempts
to generalize the elastic-plastic stress-strain law by replacing the elastic portion by a
linearly viscoelastic one and makes the yield stress dependent on the rate of deformation
during the initial, linearly viscoelastic deformation phase. It turns out that even with this
relatively simple material representation the mathematics of the problem become very
complicated, and a more detailed material representation would most likely lead to
mathematical intractability. The effect of temperature may be incorporated through
time--temperature reduction if the assumption of thermo-rheological simplicity is
justified [10].

MATERIAL REPRESENTATION AND FAILURE CRITERION

We have stated that the bulk material is to be represented by a linearly viscoelastic
solid. The stress-strain equations for such a body are given, under isothermal conditions.
by

Sij = f f Gt(t - r/~j~r) dr

s = f, G2(t-r)~*~~dT

where G\(t) and G2(t) are the relaxation moduli in shear and isotropic compression res-

Pectively s·· and e·· denote the deviatoric parts of stress and strain tensors, while bijs and
, IJ l)

bi·e are the hydrostatic parts of these tensors.
J For materials exhibiting rate or load history sensitive plasticity Crochet [9] suggested

a viscoelastic-plastic constitutive relation wherein the yield modulus Y depends on the
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history of loading; its value is given by

Y(t) = A+Bexp(-Cx)

where A, B, C are material constants, and Xis a function, of the strain state
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(2)

(3)

summation being implied by repeated indices; the superscripts v and e denote the visco­
elastic and purely (short-time) elastic components of the strain. For strains increasing with
time equation (2) asserts that faster loading corresponds to a higher yield stress, while
under constant stress it implies that yield occurs at a time which is longer the lower the
stress. For initially elastic response under rapid loading elj = eij and Y(O) = A +B while
the minimum yield value is given by Y( (0) == A, provided elj - eij is sufficiently large as
may be the case for viscoelastic non-lineart polymers.

Next we need to consider the criterion of incipient fracture. We shall define fracture
to start when the strain at the tip reaches a critical value [11-13]. This condition, known
alternately as the critical crack opening or displacement criterion, is a sufficient criterion
for fracture initiation, although, as pointed out earlier, it is not a sufficient criterion for
catastrophic failure in viscoelastic materials. It has been used for metals by Goodier and
Field [14J and Olesiak and Wnuk [15] and for simple viscoelastic materials by Williams [16].

THE STRESS AND STRAIN DISTRIBUTION AROUND THE CRACK

Consider the axisymmetric geometry in Fig. 1. The crack proper extends over the
domain 0 s r s I while the viscoplastic material is contained in a wedge in the ring
I s r s a(t). Our immediate aim is to determine the displacement w normal to the crack
plane at the crack end r = 1.

The problem of a growing crack in a viscoelastic medium or that of a crack of constant
length but subjected to a time variation in loading cannot, in general, be treated by the
correspondence principle. For one important case, however, when the loading increases
monotonically with time, Graham [17] has shown that the distribution of stresses and
strains around a crack can be found by an extended correspondence principle. This restric­
tion amounts to the requirement that in the corresponding elastic solution the stresses
do not depend on the modulus of the material. It is further assumed in this analysis that
that part of the crack surface over which the loading is applied increases monotonically
with time, that is to say, the "plastic" wedge may remain constant or only increase with
time. For a more complete discussion on the solution the reader is referred to Graham's
papers [17].

The result for the normal displacement w in the crack plane z = 0, [17]

_~ falt) dv f.v sp(s, t) ds
w(p, t) - K(o) (2 2)! (2 2)'"

1£ p V -p 0 v -S 2

2 f.t {fQ(I-rl dv IV sp(s, t - r) dS}
+- K(r) Re (2 2)' (2 2t d-r

1£ 0 p v -p "' 0 v -s 2

t Non-linear in the chemical sense of "un-crosslinked".

(4)
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can be written as
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FIG.!. Crack geometry.

(5)

(6)

J
'Klr)

w(p, t) = wQ(p, t) + --wQ(p, t - r) dr.
o K(o)

Here, wo(p, t) is the associated short time elastic solution, p(p, t) is the pressure applied at
the crack surface 0 ~ r ~ a(t) (induding the zones of plastic deformation), and K(t) is
defined as [IS]

K t = :£-1['.. 2(2Gf(s)+GHs)) . S' -> t1
( ) S2( Gf(s) + 2G~(s))Gf(s) , . .

stars denoting Laplace transformed quantities and:£ 1 denoting the inverse of the Laplace
transform. Formulae of the same type are shown to be true for all components of displace­
ment and strain tensors while the stresses are the same as in an elastic solid.

If one deals with viscoelastic behavior responses near the extremes of the spectrum and
avoids the intermediate transition range, Poisson's ratio vcan be assumed nearly constantt.
Then relation (6) simplifies to

K(t) = 2( 1- v)D(t)

D(t) being the creep compliance in shear.

(7)

t This restriction is not very severe; it allows dealing with hard polymers on the one hand and with soft
rubbery ones on the other. In order to simplify analyses v is often' assumed constant over the full time range.
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Before recording the expression for the stresses, it is appropriate to discuss the time
dependence of the stress field from a physical viewpoint as it arises out of the time depen­
dence of the material yielding at the crack tip. Under step loading there exists initially a
domain of yield, the size of which is determined by the yield value Y(O), and the stress
distribution corresponds to that obtained for the elastic-plastic case [15]. The distribution
of the (Jz stress in the vicinity of I ::;; r is indicated in Fig. 2(a). The ensuing creep increases
the function Xand causes the value of the subsequent yield stress to dropt and consequently
the size of the plastic zone to increase. This may be viewed as a discrete, incremental
process giving rise to a stair-step like function of Fig. 2(b), and in the limit of many such
increments as the continuous stress distribution in the same figure. Whether the actual
stress distribution is like the one envisaged is not clear; nevertheless, the process described
is consistent with the assumed model of time dependent plasticity.

0) b) c)

CTZ CTZ CTZ

Y(O) yeo) <Y(t»-....
1'- Y(t}

"'-'

- -
TIME
DEPENDENT

INITIAL: YIELD
YIELD

FIG. 2. Fonnation of the yielded zone and the distribution of stresses (J, within this zone.

It turns out that the process just described leads to intractable mathematics and we
shall therefore introduce a further simplification and represent the stress distribution in
the yielded zone by a time dependent average <Y(t» which is constant over the domain
I ::;; r ::;; a(t) as indicated in Fig. 2(c). Let this average be given by

< Y(t» = HY(o) + Y(t)} (8)

where Y(t) is evaluated for the strains at r = a(t). With this physical clarification in mind
we may now use the results obtained by Olesiak and Wnuk [15J and write down the stresses
immediately. We shall do this for the case when the load is applied as a tensile stress at
Z -+ oot. Let p rll, m(t) Ila(t), K !(1-2v)(1 + v), 2(t) p(t)/< Y(t». We have then
(cf. Ref. [18J)

(Jz = 0 t
(Jr = p(t)(K-l)

(Jo = - p(t)(2v + K)

O::;;p<m

t The associated unloading poses no difficulty in the formulation of the viscoelasticity problem.
t The case where the load is applied as a pressure at the crack surface is treated in detail in Ref. [18].
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(1= <Y)

(1r = <Y)[(l-A)(l-K)+K(~;) 2]

(10 <Y)[(1-A)(2V+K)-K(~rJ

(1z = 2<:2{~A ASin-- 1
(;;) +sin lU2==:~:2)i]

(1r 2<:~{[ I K+K(~r] sin-1Ui~l:2)\ -(1--K)Asin l(j~)}

ere 2~_~~{[2V+K_K(~)2.1 sin 1(·_I_j~m_~j)" -(2V+K)ASin- 1 (J).t..
n p j p- - m- ,II I

p~l

It can be observed that the stresses pass through a discontinuity at p = m. It should also
be noted that the outer radius of the plastic zone is related to the (non-dimensional) load
parameter [15J A(t) = p(t)/< Y(t» by

m(t) = [1-).2(t)l~_ (10)

The yield value <Y(t» is as yet unknown; in order to determine it we need to calculate
the strains /',ij at r = a(t) from the stresses (9). Although the following calculations arc
possible without resorting to approximations, the restriction that the yield stress is much
larger than the applied stress can simplify the analysis considerably. This simplification
would be tantamount to ignoring the problem of general yield emanating from the crack
tip and considering only limited yield prior to fracture. Then A(t) ~ I and the stresses (9)
at r = a(t) reduce to

erz <Y(t»

(Jr = <Y(t)

(Ja 2v< Y(t»

while the corresponding short-time elastic strains <i are

..,
r" ~K <Y(t)

~

" 2KI:r = Y(t)
E g

D~ = 0

E[: being the glassy or short-time modulus.
The viscoelastic strains at the tip of the plastic zone are given by

D: = J:~ =~!(02 2K +~~ t~(,)< Y(t - -r» d!
- Eg Eg Jo K(o)

( It)

(12\

(13)
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and substitution of (12) and (13) into (3) renders the function Xafter some manipulation as

2)2 fl
X = -»C tfr(r)<Y(t-r»dr.

Eg 0
(14)

Here we have defined the normalized creep compliance t/J(t) == K(t)/K(o). Recalling that
2< Y(t» = Y(o)+ Y(t) we can write now a non-linear integral equation for Y(t) as

Y(t) = A+Bexp { )(~KC[(A+B)[t/J(t)-IJ+ {~(r)Y(t-r)drJ}. (15)

This expression can be reduced by two-fold differentiation to the non-linear differential
equation

E
g

YZ_(Y_A)Y ... .
K)(2)C (Y-Af = 2(A+B)t/J(t)+t/J(t)Y.

With the definitions

(16)

y(t) = Y(t) - A,

r:x
P(t) = "2 tfr(t),

this equation simplifies to

Q(t) = r:x(A +B)t}i(t)

yZ _ yji = yZ[P(t)Y+Q(t)].

EFFECT OF TIME DEPENDENT YIELD

(17)

The solution of the non-linear differential equation (17) valid for A. ~ 1 poses a for­
midable task for general material properties P(t) and Q(t), and must be accomplished,
in general, numerically. In one special, simple case however, the solution can be obtained
analytically and in closed form, namely when the bulk material behaves as a Maxwell solid.
In this case D(t) D(o) + t/1], 1] being a constant (viscosity), one has from (7)

Equation (17) reduces then to

t
ljJ(t) = 1+­

1]D(o)

. 1
ljJ(t) = 1]D(o)

t}i = O.

.. . Z r:x ..
YY- Y = --(Y-A)zy

2ro

(18)

(19)
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where To lJD(o). Noting that

(20)ex . J} 1,,-(2A + B)t .
~ To _

(fy - y2 y2) = dj.(f/y),
et

equation (19) can be integrated directly, subject to the initial conditions of equation (I

Y(O+) = A+B

y(o+) = ~(J.B(A+B)t/J(o)= (J.B~(~

to give the average yield stress

<Y(t) = <Y(OO))I-" B exJ1 _(A +B) 1
It may be verified by substitution of the definitions

B
Ii - 2A + B

:. C(2A+B) ex ~
c = 'v.(2)K-----~---- = ~(",A+B)E

g
_

<t>(t) = 1+ Ii Ii exp( - ctlr,J

that (20) is reduced to
<Y(t) = Y(o)j<t>(t). (21)

Equation (21) gives the average stress in the plastic zone surrounding the penny-shaped
crack. Figure 3 shows the decay ofthe stress in the plastic zone. For the material parameters
we have chosent A = 100 psi, B = 25 psi, C = 400, v = O' 3, the three values ofc, 1 :s; c :s; 10
correspond to a range of Young's modulus of 5 x 104 :s; E :s; 5 X 105 psi.

1.0

0.98

o 234 5 6

x:t/TQ

FIG. 3. Decrease of the yield stress prior to fracture.

t These values were taken f;om Ref. [19]. Although they have direct practical significance only for thc filled
polymer for which they were obtained, these values are physically not without meaning. In the absence of in­
formation on viscoplastic material properties. they are more significant than a mere guess.
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Although the effect of C on the plastic relaxation is considerable, the same is not true
when one considers the displacement growth at the tip of the crack. Following [18J it can
be readily shown that the displacement w(1, t) at the tip of the crack (p = 1) for step loading
p(t) = p"H(t) is given by

w(1, t) == w,,(t) = w(o)[<I>(t)+ f~ tfr(r)<I>(t-r) dr] (22)

where

Substitution of <I>(t), equation (21), renders for the Maxwell solid,

(23)

This relation is illustrated in Fig. 4 and it is seen that the displacement is considerably less
sensitive to variations in c than the yield stress.

~

0,.
-::::-..
1:

<Y(I» =Y(O)

"

4

IO~------'-----_---J,,'------...l3--

x=t/-ro

FIG, 4, Growth ofdisplacement at the crack tip prior to fracture (solid line corresponds to time dependent
yield stress, while fine line results when yield stress is assumed constant).
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It should now be recalled that we adopted from the beginning a strain or displaccmcn l

criterion of failure initiation. According to that criterion, crack propagation starts when
the crack tip displacement wo(t) reaches the critical value w* at time t*. i.e. when

w,,(t*) = w*. (24)

The time to failure is then obtained implicitly from (23) upon substituting (24)

W*

W(o)
t* ( 1)1+(1+#);+# 1-: [1-exp(-ct*/r)].
lu (

(25)

To relate w*/w(o) to the load Po in a simple way let}' w*Yo' It has been shown [20]
that this is equal to the plasticity parameter in the Orowan-Irwin theory of fracture under
limited, time-independent ductility. Furthermore, let

(26)
2 nEg Y(o) nEg}'P =.- -.- = -_..__ ..
g 2(1 \'2)/ 2(1 - \'2)/

denote the Griffith stress Pg to cause fracture propagation upon load application in a brittle
manner and without time delay. Upon using the definition of w(o) following equation (22)

and the definition (26), equation (25) may be rewritten as

( t* ( 1) }-}Po = ~ 1+(1 +fJ)--+f3 1--: [1-exp( ct*/ro)] .
Pg l [" (

(27)

This relation between the time to initiate fracture and the applied load is shown in Fig. 5
as Trace 1. Shown in the same figure is the result for constant, rather than time dependent.
yield, Traces 2 and 3 corresponding to yield stresses at zero and infinite time respectively.

14

2

3

1210864

'---_--'-__..J..-_......L__.l...-_._--'-__...L L......i....

1.0

0.8

0.6
C>

0.

........
0.0

0.4

0.2

0

0 2

X.;t*/TO

FIG. 5. Delayed fracture as a function of load level. 1 yield stress allowed to vary with time; 2 and 3
obtained under an assumption of the constant yield stress:

<Y) = Yo curve I <Y) = Y" curve 3.
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(28)

(29)

It is clear then that the decrease in yield stress with time accelerates the deformation at
the crack tip and causes earlier failure than would be true if the initial yield stress were
maintained. Thus a fracture prediction is conservative only if it is based on the constant,
long time yield stress Y((0) in which case one has

Po = {Y(oo)}Z{1+t*lto}-+.
Pg Y(o)

We have now investigated the inception of fracture propagation in the presence of
limited time dependent plasticity. Although use of more realistic material properties could
lead to different numerical results the qualitative behavior should be the same. In spite of
the restrictions imposed by the simple material representation, it appears that time depen­
dent plasticity does not lead to gross deviations from what holds true for time-independent
plastic behavior. With this qualitative feeling as an incentive we shall now consider the
time-dependence of the fracture process in the presence of time-independent yield, but for
more general viscoelastic behavior of the unyielded material than a simple Maxwell modeL

DELAYED FRACTURE FOR TIME-INDEPENDENT YIELD

The simplification of time-independent yield properties eliminates the necessity of
solving the non-linear differential equation (17) and allows therefore a more general
representation for the bulk of the material. Furthermore, we need not necessarily restrict
ourselves to low values of A. The resulting expressions to determine the times of incipient
crack propagation are so simple that their usefulness in applications may benefit from
this simplicity more than they may suffer from their lack ofa complete material representa­
tion.

The normal crack tip displacement w(t) at p = m is obtained from equation (5) after
substituting the elastic solution [15]

wo(m,t) = 4(1-v
2
)1y"{I_(I_A2 )+}

nEg

The result is, with J(t) = p(t)/y",

4(I-v
2
)IY{ It }w(t) = w(m, t) = 0 1- [1- ,F(t)]+ + ~(r)[I- [1-A 2(t-rW] dr .

nEg 0

Let w* be the value of w(t) at the time of failure t*; furthermore, define [18, 19J

Y == w*y"

2 nEgy
pg = 2(1...:. v2 )l"

(30)

Then (30) may be written as

(ir = 2{1-[I-A
2
(t)Jt + f:* ~(r){I-[I-A2(t r)]t}dr} (31)

which relates the load history A(t) to the failure time t*. Note that there exists a minimum
crack size min[l] = 1* below which the applied load p(t) would have to exceed the yield
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stress to cause failure. The size of 1* is given by the condition that p~

nEgw*
2( 1--~:2 )};, . IJ2)

(331

For cracks of initial length 1S 1* general yield will therefore occur rather than crack
growth,

For a step load pIt) = Pr/l(t) equation (31) becomes, with Ao = pol };,

(&) 1= 2I/tU*): I - []_ A~J i l.
Y"

If we define the inverse function of

ljJ(t) == D(t)/D(o) as I == ljJ IfD(t)/D(o)]

one may write the time of instability t* explicitly from (33) as

t* = ljI I [~(~J 2 C=(f~-~)1J (34)

This time t* is a function of the crack size through (pg/YO)2 and of the applied load through
;'0 = Po/lO as long as I> 1*, no restrictions being placed on the size of the plastic zones at
the crack periphery. The function ljI- 1 is zero for arguments less than or equal to unity.
Hence instantaneous fracture ensues if

I ( PI':) 2 '2 ,I'" sl-(I-Ao)"·
2 1';)

On the other hand, if the reverse is true, i.e. if

(35)

(36)
I (pg) 2 l' ,2};) > !-(l-AO)'

then t* is greater than zero which means that some time will pass after load application
before the crack starts to propagate. For illustrative purposes we show in Fig. 6 the time to

0) b)

"0
,-(

J : I.'"

l = 2/.'
~----.f=4r

1.0

o
,-(

---------1:1"

~--------I.=2'~

-----------.l= 4 f"

o 2 10 o 10

FIG, 6. Delayed fracture caused by a penny shaped crack, r
standard linear solid Eo!L,

relaxation time (a) Maxwell solid; (b)
3
2·
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(37)

failure for a Maxwell solid and a standard linear solid. The weakening effect oflarger cracks
is clearly illustrated.

If a crack is very much larger than the minimum size 1* fracture occurs at low load
levels Ao = Po/Yo ~ 1 and equation (31) may be written more simply as

( )

2 t*

~ = A2(t*)+ 50 l,iJ(r)A2(t*-r) dr.

By multiplying both sides of this equation by Y~ the yield stress vanishes from the equation.
Therefore, the fracture resulting from large cracks at low load levels is nearly independent of
the yield process at the tip of the crack. This result is well recognized for the rate-insensitive
metals [20,22]. For the particular case of step loading p(t) = PoH(t) one obtains then the
simple result

(38)

which equation yields immediate failure initiation (t* = 0) if Po = Pg and predicts infinite
failure time when (pg/PO)2 = ljJ( 00). It follows that if ljJ(t) is bounded at infinity there exists a
lower limit on Po below which no crack propagation occurs. This lower limit is

(39)

where Ee is the long-time equilibrium modulus. If ljJ( 00) is not bounded, i.e. if Ee = 0, then
such a limit does not exist and fracture may always occur after long times.

It should be noted, with a view toward applications of (38) that one need not know the
value of Pg • Suppose one conducts tests on materials containing a crack (or several non­
interacting cracks) of size 11 and finds that a load Pol produces failure in time tT. Equation
(38) can then be written as

(40a)

and for any other load and crack size as

(40b)

Division of (40a) by (40b) renders

(41)

which equation would permit simple extrapolation of a minimum of experimental data to
other loads and crack sizes.

Inasmuch as equations (37) and (38) do not contain the yield stress they may be also
applied to materials which do not exhibit yield-like behavior provided the applied stresses
are small compared to the intrinsic molecular strength of the material [20, 22]. Correspond­
ingly, we show in Fig. 7 the prediction of failure initiation for Solithane 113 (50/50) the
mechanical properties of which are well documented in Ref. [21]. It is interesting to note
that a very similar result was obtained for the same material, by Williams [7J who considered
an energy criterion of fracture for a spherical void under hydrostatic tension. In our
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L2

10,.----_.

08

0.4

0.2

O'------'----'-----'----.L-----'------'------'-....
- 6 -4 - 2 0 2 4 6 8

LOG IO t", minutes

FIG. 7. Creep failure curves: referred to the glass transition temperature. 1- present paper equation
(37). 2 Williams' result for a spherical void, Ref. [7].

(42)

current notation that result is

(~:) 2 = 2JP(t*)-1.

This equation is also represented in Fig. 7 for Solithane 113 (50/50).
In concluding this discussion of fracture initiation in viscoelastic materials from a

penny-shaped crack we comment on the failure behavior in two-dimensional stress fields.
It can be shown in a straightforward manner that for two-dimensional geometries the
previous calculations follow through to give results which differ only in detail from those
presented here. Indeed, equations (38-41) are identical. A more detailed comparison of the
two and three-dimensional is presented in Ref. [18]. Similarly, the reader may refer to
[18] for a discussion on the effect of a temperature and rate sensitive critical strain on dis­
placement w* at the tip of the crack.
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A6crpaKT-B HeKOTophlX TBeP,llhIX, B1I3KoynpyrHx nOJIHMepaX 06pa30BaHHe TpelUHHhl CB1I3aHO c B03HH­
KHOBeHHeM KJIHHa ceTKH BOJIOKHHCThIX rroTpecKaHHH Ha KOHl.\e TpeIl.\HHhI. DOTpecKaHHhIH MaTepHan
06pa3yeTclI C 06lUeH MaCChI MaTepHana rryTeM B03HHKHoBeHHlI OTBepcTBHH npH 3a,llaHHhIX HanplllKeHHlIX
KOTophIe MOlKHO cpaBHHTh c npe,llenOM TeKy'lecTH ,llJIlI MeTaJIJIOB.

B pa60Te 06cYlK,llaeTCll BpeMlI, npH KOTOpOM ,llHCKOo6pa3Hall TpeIUHHa, oKpYlKeHHali KJIHHOo6pa3HhIM
KOJIhl.\eM nOTpecKaHHoro MeTepHana, Ha'lHHaeTClI pacnpocTpaHlIThclI. 06lUall Macca MeTepHana pacc­
MaTpHBaeTcll KaK B1I3Koynpyrall. DOTpeCKaHHhIH MaTepHan KJIHHa npe,llCTaBJIlIeT B1I3KOnJIaCTH'IecKHH
MO,llenh Kpowe. OKa3hIBaeTClI, 'ITO 3aBHClIlUall OT BpeMeHH nnaCTH'IHOCTh KJIHHa cOKpalUaeT BpeMlI
pa3pyweHHlI, no cpaBHeHHIO C TeopHeH nJIaCTH'IHOCTH, He 3aBHClIlUeH OT BpeMeHH.


